
Parsimonious Linear Fingerprinting for Time Series

Lei Li
School of Computer Science
Carnegie Mellon University

leili@cs.cmu.edu

B. Aditya Prakash
School of Computer Science
Carnegie Mellon University

badityap@cs.cmu.edu

Christos Faloutsos
School of Computer Science
Carnegie Mellon University

christos@cs.cmu.edu

ABSTRACT
We study the problem of mining and summarizing multiple
time series effectively and efficiently. We propose PLiF, a
novel method to discover essential characteristics (“finger-
prints”), by exploiting the joint dynamics in numerical se-
quences. Our fingerprinting method has the following bene-
fits: (a) it leads to interpretable features; (b) it is versatile:
PLiF enables numerous mining tasks, including clustering,
compression, visualization, forecasting, and segmentation,
matching top competitors in each task; and (c) it is fast
and scalable, with linear complexity on the length of the
sequences.

We did experiments on both synthetic and real datasets,
including human motion capture data (17MB of human mo-
tions), sensor data (166 sensors), and network router traf-
fic data (18 million raw updates over 2 years). Despite its
generality, PLiF outperforms the top clustering methods on
clustering; the top compression methods on compression (3
times better reconstruction error, for the same compression
ratio); it gives meaningful visualization and at the same
time, enjoys a linear scale-up.

1. INTRODUCTION
Time sequences appear in countless applications, like sen-

sor measurements [13], mobile object tracking [20], data cen-
ter monitoring [27], motion capture sequences [19, 21], en-
vironmental monitoring (like chlorine levels in drinking wa-
ter [25])and many more. Given multiple, interacting time
sequences, how can we group them according to similar-
ity? How can we find compact, numerical features (“finger-
prints”), to describe and distinguish each of them?

Researches in time sequences form two broad classes:

(a) Feature extraction (and similarity search, indexing etc),
using, say, Fourier or wavelet coefficients, piece-wise
linear approximations and similar methods and

(b) forecasting, like an autoregressive integrated moving
average model (ARIMA) and related methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

The former class is useful for querying: indexing, similarity
searching, clustering. The latter class is useful for mining:
forecasting, missing value imputation, anomaly detection.
Can we develop a method that has the best of both worlds?
Extracting the essence of time sequences is already very use-
ful - it would be even more useful if those features are easy
to interpret, and even better if they could help us do fore-
casting. Ability to forecast automatically leads to anomaly
detection (every time-tick that deviates too much from our
forecast), segmentation (a time interval deviating too much
from our forecast), compression (storing the deltas from the
forecasts), and missing value imputation, extrapolation and
interpolation. And of course, we would like the method to
be scalable, with linear complexity on the length of the se-
quences. Is it possible to achieve as many as possible of the
above goals, any of which alone is already very useful? The
proposed PLiF method gives a positive answer: the idea is to
extract the essential numerical representation that charac-
terizes the evolving dynamics of the sequences, specifically,
to fit a Linear Dynamical System (LDS) on the collection of
m sequences, and then we show how to extract a few, but
meaningful features out of the LDS. We will refer to those
features as the “fingerprints” of each sequence. We further
show that the proposed fingerprints achieve all the above
goals:

1. Effectiveness: the resulting features lead to a natural
distance function, which agrees with human intuition
and the provided ground truth. Thus, fingerprints lead
to good clustering as well as visualization (see Fig. 1(d)
and Fig. 5);

2. Interpretability: as we will show, the fingerprints cor-
respond to groups of harmonics;

3. Forecasting: they naturally lead to forecasting and
compression;

4. Scalability: the proposed PLiF method is fast and scal-
able on the size of the sequences.

Table 1 compares PLiF against traditional methods and
illustrates their strengths and shortcomings: a checkmark
(X) indicates that the corresponding method (column) ful-
fills the corresponding requirement (row). Only PLiF has all
entries as checkmarks. In more detail (also see Appendix B),
the desirable fingerprints should allow for lags, and small
variations in frequency. While,

• Fourier analysis and wavelet methods could identify
the frequencies in a single signal, but can not cross-
correlate similar signals, nor do forecasting1.

1One might argue that Fourier coefficients can do rudimen-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Parsimonious Linear Fingerprinting for Time Series

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We study the problem of mining and summarizing multiple time series e?ectively and e?ciently. We
propose PLiF, a novel method to discover essential characteristics (?nger- prints"), by exploiting the joint
dynamics in numerical se- quences. Our ?ngerprinting method has the following bene- ?ts: (a) it leads to
interpretable features; (b) it is versatile PLiF enables numerous mining tasks, including clustering
compression, visualization, forecasting, and segmentation matching top competitors in each task; and (c) it
is fast and scalable, with linear complexity on the length of the sequences. We did experiments on both
synthetic and real datasets including human motion capture data (17MB of human mo- tions), sensor data
(166 sensors), and network router traf- ?c data (18 million raw updates over 2 years). Despite its generality,
PLiF outperforms the top clustering methods on clustering; the top compression methods on compression
(3 times better reconstruction error, for the same compression ratio); it gives meaningful visualization and
at the same time, enjoys a linear scale-up.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

(a)

0 20 40 60 80 100 120
−1

0
1

0 20 40 60 80 100 120
−1

0
1

(b) z-value of right foot
marker

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

PC1

P
C

2

(c) PCA

−0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

FP1
F

P
2

(d) fingerprints: FP1 vs
FP2

Figure 1: Motion capture (mocap) sequences: sam-
ple data and visualization. 1(a): a film-strip of a
human motion. 1(b): right foot position for a walk-
ing motion (top), and a running one (bottom). 1(c):
Scatter-plot of two principal components for walk-
ing (blue circles) and running sequences (red stars),
without clear separation. 1(d): Scatter-plot of the
“fingerprints” (FP) by PLiF - first FP versus sec-
ond FP, for all 49 mocap sequences. Notice the
near-perfect separation of the walking motions (blue
circles), from the running ones (red stars).

• Singular value decomposition (SVD) and its “centered”
version, principal component analysis (PCA), do cap-
ture correlations (by doing soft clustering of similar se-
quences) and thus derive hidden (“latent”) variables,
but they can not do forecasting either, nor is it easy
to interpret the derived hidden variables.

• Standard Linear Dynamical Systems (LDS) and Kalman
filters can capture correlations, as well as do forecast-
ing. However, the resulting hidden variables are hard
to interpret (see Fig. 2(c)), and they do not lead to a
natural distance function.

Finally, we do not show typical distance functions for time
series clustering in Table 1: the Euclidean distance (sum of
squares of differences at each time-tick) and the Dynamic
Time Warping (DTW) distance. The reason is that none
of them leads to forecasting, nor to feature extraction, and
thus the interpretability requirement is out of reach. More-
over, the typical, un-constrained, version of DTW fails the
scalability requirement, being quadratic on the length of the
sequences.

To make the discussion more concrete, we refer to one
of our motivating applications, motion capture (mocap) se-
quences: For each motion, we have 93 numbers (positions
or angles of markers on the joints of the actor), with a
variable number of frames (=time-ticks) for each such se-
quence, typically 60-120 frames per second. See Fig. 1(b)
for two such example sequences, both plotting the right-
foot z-value as a function of time, for one of the walking

tary forecasting, since they can generate values for time ticks
outside the initial time range (1, . . . , T); however, these val-
ues will just lead to repeating the initial signal, with ringing
phenomena if the signal has a trend.

Table 1: Capabilities of Approaches. Only PLiF
meets all specs3.

SVD/ DFT/ LDS PLiF
PCA DWT

Correlation Discovery X X X
Interpretability X X
Forecasting X X

motions, and one of the running ones, from the publicly
available mocap.cs.cmu.edu repository of mocap sequences.

Given a large collection of such human motion sequences,
we want to find clusters and to group similar motions to-
gether. The desirable features/fingerprints would have the
following properties:

• P1: Lag independence: two walking motions should be
grouped together even if they start at different footstep
or phase;

• P2: Frequency proximity: running motions with nearby
speed of motion should be grouped together;

• P3: Harmonics grouping: Several sensor measurements,
like human motion, human voice, automobile traffic,
obey several periodicities, often with related frequen-
cies (“harmonics”). We would like to detect such groups
of harmonics.

Fig. 1(d) gives a quick preview of the visualization and
effectiveness of the proposed PLiF method: For the 49 se-
quences we have, we map each to its two fingerprint values,
thus making it a 2-d point. Those 49 points are shown in
Fig. 1(d), using ‘stars’ for motions that were (manually)
labeled as running motions, and circles for the walking mo-
tions. Notice how clearly the two groups can be separated
by a vertical line at x=0.

The rest of the paper is organized in the typical way: In
the upcoming sections, we give the problem definition and
a running example, then we list the shortcomings of earlier
methods, the description of PLiF, experiments, related work
and conclusions.

2. PROBLEM DEFINITION & RUNNING EX-
AMPLE

For the sake of exposition, we provide an arithmetic ex-
ample here to demonstrate our proposed PLiF method. As
mentioned in the introduction, the problem is as follows:

Problem 1 (Time sequence fingerprinting). Given
m time sequences of length T , Extract features that match
the four goals in the introduction.

The four goals are that (a) the features should be effective,
capturing the essence of what humans consider in similar se-
quences; (b) interpretable (c) they should lead to forecasting
and (d) their computation should be fast and scalable.

More specifically, for the first goal of effectiveness, we want
the fingerprints to have properties P1-P3, namely, lag inde-
pendence, frequency proximity and harmonics grouping.

Thus, we use the following illustrative sequences (see Fig-
ure 2(a)), of length T=500 time-ticks, as defined in Table 2.

3Scalability has not been shown as all methods here have
computation time linear to the length of data sequences.

Table 2: Illustrative sequences
Equation Comment
(a) X1 = sin(2πt/100) period 100
(b) X2 = cos(2πt/100) time-shifted of (a)
(c) X3 = sin(2πt/100) + time-shifted &

cos(2πt/100) higher amplitude
(d) X4 = sin(2πt/110) + mixture of two waves

0.2 sin(2πt/30) of periods 110 and 30
(e) X5 = cos(2πt/110) + same as (d) but lag in

0.2 sin(2πt/30 + π/4) both components

The first three sequences have period 100, with differing
lags and amplitudes and thus we would like them to fall into
the same group. The remaining two combine two frequencies
(with periods 110 and 30), and a small phase difference;
according to the P1-P3 properties, we would expect them
to form another group of their own.

Fig. 2(a) also shows the first sequence, in dashed line
form, so that we can visually compare the five sequences. As
mentioned in the introduction, and as we elaborate in Ap-
pendix B, the typical method for dimensionality reduction
(and thus feature extraction) is PCA/ SVD; and the typ-
ical method for forecasting is autoregression and its more
general form, Linear Dynamical Systems (LDS, where we
specifically use the output matrix). We show the resulting
features for each method as gray-scale heat-maps (Fig. 2(b)-
2(d)), where rows are sequences, columns are features (=
fingerprints), and black color indicates high values. Rows
that are visually similar means that they have similar fea-
ture values and thus would end up in the same cluster.

Interpreting the heat-maps or “Why not PCA or
LDS?”. In short, only PLiF gives effective features. Specif-
ically, notice that PCA (Fig. 2(b)) yields similar rows for
sequence (a) and (e) - they are indeed visually similar in
their time-plots, too, with small Euclidean distance (sum of
square of daily differences). This is not surprising, because
PCA and SVD actually preserve the Euclidean distance as
best as possible - except that the Euclidean distance fails
our desirable goals, heavily penalizing lags. Similarly us-
ing the output matrix C from LDS (Fig. 2(c)) gives a poor
grouping.

The heat-maps above explain why both PCA/SVD, as
well as LDS, will lead to poor clustering, after we apply, say,
k-means [11]. In contrast, the heat-map of our proposed
method PLiF (Fig. 2(d)) gives the expected groupings: the
last two sequences are clearly together, with dark color in
their first column; and the first three sequences have dark
color in their second column.

As we show in later sections, PLiF also gives the inter-
pretation for each feature: the corresponding “harmonic”
groups and the strength of them in each of the sequences
(Fig. 3(c)). Although the above is synthetic data, such lag
correlation and frequency combinations are common in time
series data such as motion capture data and sensor data.

3. PROPOSED METHOD: PLiF
We describe our proposed method PLiF (Parsimonious

Linear Fingerprinting) in this section. First we give the
basic variation (PLiF-naive) and explain its steps and in
Appendix C.3 we show how to make it even faster. Table 3

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

(a) Sample Signals

PC1 PC2

1

2

3

4

5

(b)
PCA

1 2 3 4 5 6

1

2

3

4

5

(c) LDS

FP1 FP2

1

2

3

4

5

(d)
PLiF

Figure 2: Running example: 5 synthetic sequences
(top 3, with period 100 and possibly shifts; rest
2, with periods 110 and 30. 2(a): the time plots.
2(b),2(c),2(d): ‘heat-maps’ of fingerprints for each
sequence, using PCA, LDS and PLiF, respectively.
PLiF gives similar fingerprints for the top 3 and the
bottom 2 sequences respectively, while competitors
do not.

Table 3: Symbols

m number of sequences
T duration (length) of sequences
h number of hidden variables for each time tick
h′ number of harmonics excluding conjugates
X data matrix, m× T
~zn hidden variables for time n, h× 1 vector
~µ0 initial state for hidden variable, h× 1 vector
A transition matrix (like “Newton dynamics”), h×h
C output matrix (“hidden to observation”) m× h
V compensation matrix, eigenvectors of A, h× h
Λ eigen-dynamics matrix (eigenvalues of A), h× h
Ch harmonic mixing matrix, m× h
Cm harmonic magnitude matrix, m× h′

F fingerprints

gives an overview of the symbols used and their definitions.

Goal. To recap, we want to solve Problem 1, Given multi-
ple time sequences of same duration T, find features which
have the four properties namely: (a) Effective (can be used
for visualization and clustering); (b) Meaningful; (c) Gen-
erative (can be used for forecasting and compression); and
(d) Scalable.

Each following subsection describes a step in our algo-
rithm. At the high level, PLiF (a) discovers the “Newton”-
like dynamics, using a modified, faster way of learning an
LDS; (b) normalizes the resulting transition matrix A, which
reveals the natural frequencies and exponential decays / ex-
plosions of the given set of sequences (which we refer to
as harmonics, see Definition 1); and (c) groups some of
those harmonics/hidden variables, after ignoring the phase,
thus accounting for lag-correlations. The discovered groups
of such frequencies are exactly the “fingerprints” (features)
that PLiF is using for clustering, visualization, compression,
etc.

3.1 Learning Dynamics
Intuition. To understand the hidden pattern in the multi-
ple signals, we want to extract the hidden dynamics, similar

to “Newtonian” dynamics like velocities and accelerations.
Our basic intuition is to assume that there is a series of
hidden variables, representing the states of the hidden pat-
tern, which are evolving according to a linear transformation
and are linearly transformed to the observed numerical se-
quences.

Theory. To obtain the dynamics in data, we use an un-
derlying Linear Dynamical System (LDS) to model multiple
time series (Eq. 11 and 12). We use the EM algorithm (de-
scribed in Appendix B.3) for learning the model parameters.

~z1 = ~µ0+noise ~zn+1 = A~zn+noise ~xn = C~zn+noise

(n = 1, . . . , T).
The LDS model includes parameters of an initial state

vector ~µ0, a transition matrix A and an output matrix C
(along with the noise covariance matrices). Similar to “New-
tonian” dynamics, the transition matrix A will predict the
hidden variables (like the velocity and acceleration in hu-
man motions) for the next time tick, and the output matrix
C will tell us how the hidden variables (e.g. velocities and
accelerations) map to the observed values (e.g. positions) at
each time tick (each row of C corresponds to one sequence).

Note that as discussed before, the transition matrix A is
not unique: it is subject to permutation, rotation and linear
combinations, and so is the output matrix C. Thus each
row in C can not uniquely identify the characteristics of the
corresponding series. Our subsequent steps are motivated
by this observation.

Example. On using h = 6 hidden variables to learn the pa-
rameters for the 5 synthetic sequences shown in Figure 2(a),
we will get a 6×6 transition matrix A, a 5×6 output matrix
C and a 6× 1 initial state vector ~µ0. Figure 2(c) shows the
C matrix. Clearly, it is all jumbled up and doesn’t show any
clear pattern w.r.t. the sequences.

3.2 Canonicalization
Intuition. Equations of the linear system (see Appendix B,
Eq. 11) tell that the hidden variables (~zn) can have only a
limited number of modes of operation that depend on the
eigenvalues of the A matrix: The behavior can be expo-
nential decay (real eigenvalue, with magnitude less than 1),
exponential growth (real eigenvalue, with magnitude greater
than 1), sinusoidal periodicity of increasing / constant / de-
creasing amplitude (complex eigenvalue a + bi controlling
both amplitude and frequency) and mixtures of the above.
Those eigenvalues directly capture the amplitude and fre-
quencies of the underlying signals of hidden variables, which
we refer to as harmonics (Definition 1). Our goal in this step
is to identify the canonical form of the hidden harmonics and
how they mix in the observation sequences.

Theory. We know that a set of similar matrices share the
same eigenvalues [9]. Hence, we propose to perform the
eigenvalue decomposition of the transition matrix A, and
obtain the corresponding eigen-dynamics matrix and eigen-
vectors.

A = VΛV∗ (1)

where V ∗V∗ = I. The matrix V contains the eigenvectors
of A and Λ is a diagonal matrix of eigenvalues of A. We

can justify doing the decomposition because over C almost
every matrix is diagonalizable. Specifically, the probability
that a square matrix of arbitrary fixed size with real entries
is diagonalizable over C is 1 (see Zhang [32]). Also without
loss of generality, we assume the eigenvalues are grouped
into conjugate pairs (if any) and ordered according to their
phases.

Note that the output matrix C in LDS represents how the
hidden variables translate into observation sequences with
linear combinations. In order to obtain the same observa-
tion sequences from Λ as the transition matrix, we need to
compensate the output matrix C to get the harmonic mixing
matrix Ch.

Ch = C ·V (2)

Similarly, the canonical hidden variables will be:

~µnew
0 = V∗ · ~µ0 (3)

~znew
n = V∗ · ~zn (4)

The following two lemmas tell how the harmonic mixing
matrix Ch looks like and how the canonical hidden variables
correspond to the original dynamical system:

Lemma 1. V has conjugate pairs of columns correspond-
ing to the conjugate pairs of eigenvalues in Λ. Hence, the
harmonic mixing matrix Ch must contain conjugate pair of
columns corresponding to the conjugate pairs of the eigen-
values in Λ.
Proof Sketch: See Appendix.

Lemma 2.

~znew
n = Λn−1 · ~µnew

0 + noise (5)

~xn = Ch ·Λn−1 · ~µnew
0 + noise (6)

Proof Sketch: See Appendix.

The intuition is that all hidden variables ~zn, all canoni-
cal hidden variables ~znew

n , and all observations ~xn (n =
1, . . . , T) are mixtures of a set of growing, shrinking or sta-
tionary sinusoid signals, of data-dependent frequencies; we
refer to those signals as “harmonics”, and their character-
istic frequencies and amplitudes are completely defined by
the eigenvalues of the transition matrix A. “Harmonics” are
formally defined as:

Definition 1. A signal yn is said to be a harmonic if it
is in the form of yn = (a+bi)n, where a+bi is an eigenvalue
of A and i =

√−1.

Our definition of harmonic is related to the frequencies
that the Fourier transform would discover, with two major
differences: (a) exponential amplitude: our harmonic func-
tions could be growing or shrinking exponentially (for a 6= 1)
(b) generality: the frequencies of the Discrete Fourier Trans-
form (DFT) are always multiples of the base frequency 1/T ,
while our harmonics could have any arbitrary frequency (b
could take any value that fits the given data sequences).

Example. On performing this step on the learned tran-
sition matrix from the 5 synthetic sequences, we will get a
6×6 Λ matrix with eigenvalues 0.998±0.057i, 0.998±0.063i,
and 0.978± 0.208i on the diagonal. From our above discus-
sion, we know that when the real part of the eigenvalue =
1, then the signal is a sinusoid - which is the case here. The

imaginary part on the other hand corresponds to the fre-
quencies. Thus 0.057 ≈ 2π/110 corresponds to frequency
1/110, 0.063 ≈ 2π/100 corresponds to frequency 1/100 and
0.208 ≈ 2π/30 corresponds to frequency 1/30 - which are
precisely the base frequencies in the data.

Figure 3(a) shows the matrix Ch obtained for the sam-
ple signals. We have shown the entries in the standard
polar form: Aeφi, A is the magnitude and φ is the angle
(phase). For clarity, the values which are very small have
been shown as 0 in the matrix. Firstly as expected from
Lemma 1, we have conjugate pairs of columns correspond-
ing to the eigenvalues which correspond to the frequencies.
Secondly, note that signals (a) and (b) are the same sinu-
soid but with just different phases (specifically a phase dif-
ference of π/2). Hence in the matrix Ch they have the same
frequency components (high values only in the conjugate
columns 3 and 4) with the same weights (same A value)
but with different phases (different φ values). So, if we di-
rectly try to cluster Ch, we will not place them in the same
cluster. Thirdly, the phase difference is also preserved in
Ch: 0.82 + 0.75 = 1.5708 = π/2 = the phase difference be-
tween signals (a) and (b). This can also be verified for the
signals (d) and (e) which have different phases for the two
constituent frequencies.

3.3 Handling Lag Correlation: Polar Form
Intuition. As specified in Section 1, the ideal features should
catch lag correlation. After computing the harmonic mixing
matrix Ch, we have found the contribution of each harmonic
in the resulting observation sequences. Each row in Ch rep-
resents the characteristics of each data sequence in the do-
main of the harmonics. Thus Ch can plausibly be used to
cluster the sequences. However, the harmonic mixing ma-
trix not only tells the strength of each eigen-dynamic but
will also encode the required phases for different sequences.
Thus we will fail to group similar motions just due to the
lag or phase differences. Intuitively for example, suppose we
have two almost identical walking motions, except that one
starts from the left foot and another from the right foot.
We want to extract features that could identify the walking
behavior, no matter which foot it starts with, so that we
would be able to group the two walking motions together.

Theory. We eliminate phase by taking the magnitude of
the harmonic mixing matrix Ch abs(Ch). From Lemma 1
we will get the same column for those conjugate columns of
Ch; we drop these duplicate columns to get the harmonic
magnitude matrix Cm. The harmonic magnitude matrix
Cm tells how strong each base harmonic participates in the
observation time sequences and naturally leads to lag inde-
pendent features (P1, Sec. 1).

Lemma 3. abs(Ch) contains pairs of identical columns.

Example. Figure 3 (b) and (c) show the matrix Cm ob-
tained after applying this step on the generated Ch matrix
for the synthetic signals. Note that Cm has begun to show
some clear patterns corresponding to the underlying true
clusters.

3.4 Grouping Harmonics
Intuition. The harmonic magnitude matrix Cm captures
the contributing coefficients of each individual frequency.

As we find harmonic frequency sets in music, in real time-
series like motions, we will expect to usually find motion
sequences composed of several major frequencies. Hence we
now want to find such harmonics groups (P3 as stated in
Section 1) capable of describing common characteristics of
similar motion sequences, and the corresponding representa-
tions of each sequence in such harmonics group space. As a
concrete example, say we want to determine that walking se-
quences are composed of 10 units of frequency 1 and 1 units
of frequency 2, while running motions have say 10 units of
frequency 2 and 1 units of frequency 3. Furthermore, a fast
walking motion may in fact have a proper mix of both a
walking frequency-group and running frequency-group.

Theory. To achieve this goal, we can use any dimensional
reduction method such as SVD/PCA, ICA or nonnegative
matrix factorization. For simplicity, we take the singular
value decomposition (SVD) of the harmonic magnitude ma-
trix Cm. As we introduced earlier, SVD is capable of finding
low rank projection of the data matrix. C̄m ≈ Uk · Sk ·VT

k

where C̄m is column centered from Cm, Uk and Vk are
orthogonal matrices with k columns, and Sk is a diagonal
matrix. The diagonal of Sk contains k singular values which
are usually sorted by magnitude. Finally, we obtain the
features as follows:

F = Uk · Sk (7)

Example. Figure 2(d) shows the final F matrix obtained
from the sample sequences. Note that this matrix very
clearly brings out the correct groupings. Also notice that
in the corresponding Cm matrix, sequences (d) and (e) had
high components on columns 1 and 3 (which map to the 2
frequencies generating those signals). But after doing SVD,
F gives us a clearer and simpler picture where they are
shown to be more related by having the same ’group’ of
harmonics combined in the same way.

3.5 Discussion
Choosing h:. A particular issue in the learning algorithm
is choosing a proper number h for the hidden dimension of
underlying LDS. In practice, we use the “80%-95%” energy
criterion to determine h [5]. That is, we take the Singular
Value Decomposition of X, rank the singular values, and
then choose h at the rank with 95% of the total sum of

squared singular values: ĥ ← argh

∑h
j=1 s2

j∑m
i=1 s2

i
, where si’s are

singular values of X in descending order.

Complexity:

Lemma 4. The straightforward implementation of the al-
gorithm (refered to as PLiF-näıve) costs O(#iteration · T ·
(m3 +h3)), where #iteration is the number of iterations for
learning LDS.

However, using the Woodbury matrix identity [9] and in-
crementally computing inverse of covariance matrix [25],
the complexity can be reduced dramatically as stated in
Lemma 5. See Appendix C.3 for details.

Lemma 5. PLiF can be computed within time of O(#iteration·
(T · (m2 · h + h3)) + m · h2).

4. EXPERIMENTAL RESULTS

0 0 0.46e−0.82i 0.46e0.82i 0 0
0 0 0.46e0.75i 0.46e−0.75i 0 0
0 0 0.65e−0.03i 0.65e0.03i 0 0

0.50e0.70i 0.50e−0.70i ≈ 0 ≈ 0 0.53e−0.48i 0.53e0.48i

0.50e−0.87i 0.50e0.87i ≈ 0 ≈ 0 0.53e0.31i 0.53e−0.31i

︸ ︷︷ ︸
Harmonic pair H1

︸ ︷︷ ︸
Harmonic pair H2

︸ ︷︷ ︸
Harmonic pair H3

(a) Ch

0 0.46 0
0 0.46 0
0 0.65 0

0.50 ≈ 0 0.53
0.50 ≈ 0 0.53

(b) Cm

1 2 3

1

2

3

4

5

(c) Cm heat-
map

Figure 3: Running example: the synthetic, sinusoidal signals of Figure 2(a), and the output matrices according
to PLiF: (a) The harmonic mixing matrix Ch and (b) the harmonic magnitude matrix Cm and (c) its heat-map
(darker color - higher value in that cell). Near-zero values: omitted for clarity. Notice that (1) the columns
of (a) are complex conjugates, in pairs; (2) the harmonic magnitude matrix Cm makes similar sequences to
look similar (top 3, bottom 2).

Please see a description of our experimental environment
in the Appendix C.2.

4.1 Effectiveness: Visualization
As stated in the introduction section, our proposed method

PLiF is capable of producing meaningful features: each fea-
ture column corresponds to a group of “harmonic” frequen-
cies (one or more) and features represent the participation
coefficients of the harmonic group in the sequence.

For the MOCAP dataset, we found interpretable and inter-
esting patterns in its fingerprints (Fig. 4). In our experi-
ment, we use hidden dimension h = 7 as suggested by the
95% criteria, and produce two fingerprints for each sequence
(k = 2). The walking motions exhibit strong correlation
with harmonics with eigen-values 0.998± 0.053i, equivalent
to the frequency of 1/119, while the running ones are cor-
related with eigenvalues 1.007 ± 0.082i and 0.989 ± 0.108i,
equivalent to the frequencies of 1/78 and 1/58.

We already presented meaningful features, both visually
and numerically, extracted from multiple sequences by our
proposed PLiF method. Thanks to those features, PLiF can
be readily used for almost all mining tasks for time series,
namely clustering, compression, forecasting and segmenta-
tion. While forecasting and segmentation are straightfor-
ward brought by the underlying dynamical system of our
method, we will focus on the particular application of PLiF
in time series clustering and compression.

4.2 Effectiveness: Clustering
The rationale in our clustering method lies in the fact that

the fingerprints (features) computed by PLiF characterize
how much each “harmonic” group participates in each of the
sequences. Essentially, such a fingerprint tells the projection
of each sequence onto the basis of the “harmonic” group.
The final clustering result can be then obtained by applying
any state-of-the-art clustering algorithm, such as k-means
or spectral clustering [11] (Chap 14.3.6 & Chap 14.5.3) on
the fingerprints.

In our experiments, we use simple thresholding (=0) on
the first fingerprint (FP1) to tell the group, equivalent to
k-means on FP1. In this way PLiF can produce two class
grouping. But it can be easily extended to handle multiple
class case, through the hierarchical framework [11] (Chap

0 20 40 60 80 100 120
−1

0

1

0 20 40 60 80 100 120
−1

0

1

0 20 40 60 80 100 120
−1

0

1

0 20 40 60 80 100 120
−1

0

1

0 20 40 60 80 100 120
−1

0

1

(a) Original

FP1 FP2

5

10

15

20

25

30

35

40

45

walk

run

(b)
Finger-
prints

−0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

FP1

F
P

2

(c) Scatter plot

1 2 3

5

10

15

20

25

30

35

40

45

run

walk

(d) har-
monic
magnitude
matrix
Cm

Figure 4: Mocap fingerprints and visualization. 4(a)
displays several sample sequences, top two of which
are walking (#15 and #22), followed by two running
ones (#45 and #38) and a running-to-stop motion
(#8). 4(b): Each motion(row) displays two finger-
prints. Upper 26 rows are walking motion, and the
rest are running motion. 4(c): Walking motion are
in blue circles, and running in red stars. Note the
three red stars close to circles turn out to be abnor-
mal motions: running to stop (#8 and #57), and
right turn (#43).

14.3.12): applying PLiF-clustering in each level to produce
bi-clustering and further dividing in proper descendants.

In MOCAP we test the clustering result on the right foot
marker position with sequences of equal length (T = 107, m =
49). Since we know the true labels of each motion in MOCAP,
we adopt a standard measure of conditional entropy from
the confusion matrix of prediction labels against true labels
to evaluate the clustering quality. The conditional entropy
(CE) tells the difference of two clustering (lower is better),

based on the following equation: CE = −∑ CMij∑
ij CMij

log
CMij∑
j CMij

.

We use a commonly practiced method as the baseline
for comparison: first projecting the multiple sequences into
low dimensional principal components (#dim=#class=2)
and then clustering by k-means with Euclidean distance.
Tab. 4(a) and 4(b) show the confusion matrices and their

Table 4: Clustering on MOCAP right foot marker z-
coordinate: Confusion matrix and conditional en-
tropy. Note the ideal confusion matrix will be di-
agonal, which has conditional entropy of 0. Note in
both way PLiF wins.

(a) PCA-Kmeans: CE =
0.68

walk run
predicted

-1 15 13
1 11 10

(b) PLiF: CE = 0.18

walk run
predicted

-1 26 3
1 0 20

Figure 5: PLiF-
clustering on
BGP traffic data.
Note how geo-
graphically close
routers have
been clustered
together.

conditional entropies from the predicted grouping by the
baseline and by PLiF clustering respectively. Note while
baseline makes nearly random guesses, our method could
identify all walking and almost all running motions correctly.
The only three (out of 49) mistakes by PLiF turn out to be
two running to stop motions and a right turn. As a typi-
cal example in Fig. 4(a), those mistakes have a very similar
pattern with walking motion, so that even human would be
confused.

As an exploratory example, we use PLiF-clustering to find
groups on BGP data - we do not have ground-truth labels of
each sequence here. Fig. 5 shows the results (each clus-
ter is shown encircled). Note that the results match well
with the notion that geographically closer routers tend to
be more correlated than others. This is because the BGP
routing protocol itself tries to find shorter routes which re-
sults in packets being sent locally to nearby routers rather
than routers far away. Thus closer routers may have time
shifts and correlations that are captured by PLiF.

4.3 Compression
The fingerprints extracted by PLiF could be used in a

compression setting as well. The basic idea is to store the
eigen-dynamics matrix (Λ), its associated projection matrix
(Ch) and a subset of expected value of hidden variables.
From Sec. 3.2, the eigen-dynamics Λ is a diagonal matrix, so
we only keep the diagonal part. We also keep E[~zi] computed
from the E-step of EM algorithm for LDS. To be able to
recover from compression, we compute the hidden values
using ~µi = V∗·E[~zi]. PLiF-compression finds a subset of J ⊆
{1, . . . , T}, determining which time tick of hidden values
will be stored. Here we use a similar idea as DynaMMo
compression [21] to select the best subset of time tick index
using dynamics programming. To recover the original signal,
we project back the data matrix from those hidden variables
and dynamics using the following equations:

~xi = Ch · ~µi (8)

~µj = Λj−i~µi if i ∈ J ∧ i + 1, . . . , j /∈ J (9)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

compression ratio

re
la

tiv
e

er
ro

r

PCA

DynaMMo

PLiF

2.5x

(a) MOCAP walking(#22)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

compression ratio

re
la

tiv
e

er
ro

r

PCA
DynaMMo
PLiF

~3x

(b) CHLORINE

Figure 6: Compression: normalized reconstruc-
tion error versus compression ratio. Note PLiF
achieves up to three times better than state-of-the-
art method DynaMMo compression.

0 1000 2000 3000 4000
0

50

100

150

200

sequence length (ticks)

w
al

l c
lo

ck
 ti

m
e

(s
)

 17 sequences
50 sequences
83 sequences
117 sequences
150 sequences

(a) CHLORINE

0 5 10

x 10
4

0

200

400

600

800

1000

sequence length (ticks)

w
al

l c
lo

ck
 ti

m
e

(s
)

10 sequences

(b) BGP

Figure 7: PLiF computation time versus the length
of sequences on CHLORINE and BGP datasets: linear as
expected.

We did compression experiments on both MOCAP and CHLORINE

data and evaluated the quality by relative error defined

as: relative error = mse(X̂−X)·m∑
i var(Xi)

where mse denotes mean

square error and var variance for each sequence. Fig. 6(a)
and 6(b) show respectively PLiF-compression results for a
walking motion (#22) and CHLORINE compared with PCA
and DynaMMo [21]. Note here the statistics are generated
by varying over different h and number of time ticks of hid-
den variables to keep, and we only plot the skyline of com-
pression ratio and error.

4.4 Scalability
We now evaluate the scalability of PLiF on both MOCAP

and CHLORINE data. We took various sizes of the CHLORINE

sequences (by truncation) to test the scalability with respect
to the length and the number of sequences.

Fig. 7(a) and 7(b) show the wall clock time of PLiF with
respect to the length of sequences, on five different number
of sequences from CHLORINE data, and on 10 sequences from
BGP data (after taking the logarithm). In each experiment,
we set the number of hidden variables h = 15 for CHLORINE

and h = 10 for BGP and the learning step runs at the same
number of iterations (= 20). In Fig. 7(a) and 7(b), all wall
clock times fall in to almost straight line, indicating the
linear scalability of PLiF over the length of sequences.

We did experiment on MOCAP dataset to compare the speed
of PLiF and PLiF-naive. Fig. 8 presents wall clock time on

#22 #32 #45
0

5

10

15

20

25

30

PLiF−naive
PLiF

3x

2.9x

3x

Figure 8: Wall
clock time of PLiF
versus PLiF-naive
on and MOCAP:
upto 3x gains.
Similarly experi-
ment on CHLORINE

dataset obtains
3.5x speedup.

three typical MOCAP sequences, one walking motion (#22),
one jumping motion and one running motion (#45). PLiF
is 3 times faster PLiF-naive. Experiments on the CHLORINE

dataset reveals similarly, PLiF scales much better than the
basic algorithm PLiF-naive over the number of sequences
and gets up to 3.5 times faster than the latter.

5. CONCLUSIONS
The main idea is the proposal and design of PLiF, for the

extraction of “fingerprints” from a collection of co-evolving
time sequences. PLiF has all of the following desirable char-
acteristics,

1. Effectiveness: The resulting features correspond to mem-
bership weights in each harmonics group; thus, they
capture correlations, despite the presence of lags, and
despite small shifts in frequency. The resulting dis-
tance function agrees with human intuition and the
provided ground truth. Thus, fingerprints lead to good
clustering, as well as visualization.

2. Interpretability: The fingerprints correspond to groups
of harmonics, which are easy to interpret.

3. Forecasting: PLiF can easily do forecasting, since it
is based on linear dynamical systems and their cor-
responding difference equations. Thus, it can easily
do forecasting and compression, outperforming SVD
and state-of-the-art compression methods (see Fig-
ure 6(a),6(b)).

4. Scalability: PLiF is fast and scalable, being linear on
the length of the sequences.

We showed the basic version of PLiF, as well as the final
one. Both are linear on the length of sequences, but PLiF
can be up to 3.5 times faster, thanks to our Lemma 5.

Future work could focus on testing PLiF’s performance
on additional datasets and its use for segmentation and
anomaly detection, which as we mentioned are natural by-
products of any method that can do forecasting. One lim-
itation of the current proposed method is the inability to
handle sequences of non-uniform lengths. In such cases,
the näıve way of truncating sequences wastes part of data.
Hence further work may also target extending PLiF to clus-
ter time series with different lengths.

6. REFERENCES
[1] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series

Analysis: Forecasting and Control. Prentice Hall, Englewood
Cliffs, NJ, 3rd edition, 1994.

[2] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, pages 588–599, 2004.

[3] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD,
pages 419–429, Minneapolis, MN, May 25-27 1994.

[4] A. W.-C. Fu, E. J. Keogh, L. Y. H. Lau, and C. A.
Ratanamahatana. Scaling and time warping in time series
querying. In VLDB, pages 649–660, 2005.

[5] K. Fukunaga. Introduction to Statistical Pattern Recognition.
Academic Press, San Diego, CA, 1990.

[6] M. Garofalakis, J. Gehrke, and R. Rastogi. Data Stream
Management: Processing High-Speed Data Streams. Springer,
2009.

[7] Z. Ghahramani and G. E. Hinton. Parameter estimation for
linear dynamical systems. Technical Report CRG-TR-96-2,
February 1996.

[8] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for
approximate aggregate queries. In VLDB, pages 79–88, 2001.

[9] G. H. Golub and C. F. Van Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, USA,
1996.

[10] D. Gunopulos and G. Das. Time series similarity measures and
time series indexing. In SIGMOD Conference, Santa Barbara,
CA, 2001. Tutorial.

[11] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning. Springer, corrected edition, July 2003.

[12] M. Jahangiri, D. Sacharidis, and C. Shahabi. Shift-split: I/o
efficient maintenance of wavelet-transformed multidimensional
data. In SIGMOD Conference, pages 275–286, 2005.

[13] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream
resource management using kalman filters. In SIGMOD, pages
11–22, 2004.

[14] C. S. Jensen and S. Pakalnis. Trax - real-world tracking of
moving objects. In VLDB, pages 1362–1365, 2007.

[15] I. Jolliffe. Principal Component Analysis. Springer Verlag,
1986.

[16] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transactions of the ASME C Journal of
Basic Engineering, (82 (Series D)):35–45, 1960.

[17] K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures
for effective clustering of arima time-series. In ICDM, pages
273–280, 2001.

[18] E. J. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406–417, 2002.

[19] E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and
M. Cardle. Indexing large human-motion databases. In VLDB,
pages 780–791, 2004.

[20] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing
mobile objects. PODS, pages 261–272, 1999.

[21] L. Li, J. McCann, N. Pollard, and C. Faloutsos. Dynammo:
Mining and summarization of coevolving sequences with
missing values. In KDD, New York, NY, USA, 2009. ACM.

[22] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis.
Continuous nearest neighbor monitoring in road networks. In
VLDB, pages 43–54, 2006.

[23] Ü. Y. Ogras and H. Ferhatosmanoglu. Online summarization of
dynamic time series data. VLDB J., 15(1):84–98, 2006.

[24] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: A probabilistic analysis.
In PODS, pages 159–168, 1998.

[25] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern
discovery in multiple time-series. VLDB, 2005.

[26] D. Rafiei and A. O. Mendelzon. Similarity-based queries for
time series data. In SIGMOD Conference, pages 13–25,
Tucson, AZ, 1997.

[27] G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive
time series streams with multiscale compressed trickles.
PVLDB, 2(1):97–108, 2009.

[28] A. Safonova and J. K. Hodgins. Construction and optimal
search of interpolated motion graphs. ACM Trans. Graph.,
26(3):106, 2007.

[29] R. H. Shumway and D. S. Stoffer. An approach to time series
smoothing and forecasting using the em algorithm. Journal of
Time Series Analysis, 3:253–264, 1982.

[30] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and
indexing of moving objects with unknown motion patterns. In
SIGMOD, pages 611–622, 2004.

[31] M. E. Tipping and C. M. Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society,
Series B, 61:611–622, 1999.

[32] Z. N. Zhang. The jordan canonical form of a real random
matrix. In Numer. Math. J. Chinese Univ., 23(2001).

ACKNOWLEDGMENTS
This material is based on work supported by the Army Re-
search Laboratory under Cooperative Agreement No. W911NF-
09-2-0053, the National Science Foundation under Grants
No. DBI-0640543, CNS-0721736, CNS-0721889 and under
the auspices of the U.S. Department of Energy by University
of California Lawrence Livermore National Laboratory un-
der contract DE-AC52-07NA27344 (LLNL-CONF-404625),
subcontracts B579447, B580840. This work is also partially
supported by a Sprint gift. Any opinions, findings, and con-
clusions or recommendations in this material are those of
the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Laboratory, the U.S. Government, the National
Science Foundation, or other funding parties. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation here on.

APPENDIX
A. ADDITIONAL RELATED WORK

There is a lot of work on time series analysis, on indexing,
clustering, and forecasting.

Indexing, Signals and Streams: For indexing, the idea is
to extract features [3] and then use a spatial access method.
Typical features include the Fourier transform coefficients,
wavelets (Gilbert et al., [8], Jahangiri et al. [12]) piece-wise
linear approximations (Keogh et al. [18]).These are mainly
useful for the Euclidean distance, or variations (Rafiei et
al [26], Ogras et al [23]). Indexing for motion databases has
also attracted attention, both in the database community
(eg., Keogh et al. [19]) as well as in graphics (Safonova et
al. [28]).

The typical distance function is the Euclidean distance;
the other major competitor is the time warping distance,
also known as Dynamic Time Warping (DTW) (e.g., see
the tutorial by Gunopulos and Das [10]). The linear-time
constrained versions of DTW (Itakura parallelogram, Sakoe-
Chiba band) have been studied in [18, 4].

There is also vast, recent literature on indexing moving
objects (Jensen et al. [14] Mouratidis et al. [22]), as well
as streams (e.g., see the edited volume by Garofalakis et
al. [6]). An additional recent application for time series is
monitoring a data center (eg., Reeves et al. [27]), where
the goal is to observe patterns in order to minimize energy
consumption. An equally important monitoring application
is environmental sensors (e.g., Deshpande et al. [2]).

Dimensionality reduction: There are numerous papers on
the topic, with typical methods being PCA [15], SVD/LSI [5]
and random projections [24].

Autoregression: Autoregression is the standard first step
for forecasting. It is part of the ARIMA methodology, pi-
oneered by Box and Jenkins [1], and it discussed in every
textbook in time series analysis and forecasting. Kalpakis
et al [17] used autoregression to extract features, using the
so-called cepstrum method from voice processing. Kalman
filters and Linear Dynamical Systems are closely related to
autoregression, trying to detect hidden variables (like veloc-
ity, acceleration) at every time-tick, and use them for fore-
casting. In the database community, Kalman filters have
been proposed for sensor data (Jain et al [13]) as well as for
moving objects (Tao et al [30]).

All the above approaches are powerful and very popu-
lar for their intended problem. In fact, the proposed PLiF
method uses some of them as stepping stones (LDS, PCA).
However, none of them achieves all the goals we set in the
introduction.

B. SPECIAL CASES & THEIR SHORTCOM-
INGS

There are several existing methods, but none matches all
the desirable properties illustrated in Table 1. Thus, none
is a head-on competitor to our proposed PLiF method. We
elaborate on PCA, Discrete Fourier Transform and Linear
Dynamical Systems here because (a) they are the typical
competitors for some (but not all) of the target tasks and
(b) they can help in describing our PLiF method as well.

B.1 Principal Component Analysis
Principal Component Analysis (PCA) is the textbook method

of doing dimensionality reduction, by spotting redundancies
and (linear) correlations among the given sequences. Tech-
nically, it gives the optimal low rank approximation for the
data matrix X. In our running example of Section 2, the
matrix X would be a 5× 500 matrix, with one row for each
sequence and one column per time-tick. Singular value de-
composition (SVD) is the typical method to compute PCA.
For a data matrix X (assume X is zero-centered), SVD com-
putes the decomposition

X = U · S ·VT

where both U and V are orthonormal matrices, and S is a
diagonal matrix with singular values on the diagonal. Using
standard terminology from the PCA literature, V is called
the loading matrix and U · S will be the component score.
To achieve dimensionality reduction, small singular values
are typically set to zero so that the retained ones maintain
80-90% of the energy (= sum of squares of eigenvalues). We
shall refer to this rule of thumb as the energy criterion [5]
(equivalently, this truncation produces a low rank projec-
tion). In our running example of Figure 2(a), the U ·S com-
ponent score matrix is a 5×2 matrix, since we are retaining
2 hidden variables.

PCA is effective in dimensionality reduction and in find-
ing linear correlations, particularly for Gaussian distributed
data [31]. However, the low dimensional projections are hard
to interpret. Moreover, PCA can not capture time-evolving
patterns (since it is designed to not care about the ordering
of the rows or the columns), and thus it can not do fore-
casting. Fig. 2(b) shows the top two principal components
for the synthetic five sequences. It does not show any clear
pattern of underlying clusters; thus k-means indeed gives a
poor final clustering result on it.

B.2 Discrete Fourier Transform
The T -point Discrete Fourier Transform (DFT) of sequence

(x0, . . . , xT−1) is a set of T complex numbers ck, given by
the formula

ck =

T−1∑
t=0

xte
− 2πi

T kt k = 0, . . . , T− 1

where i =
√−1 is imaginary unit.

The ck numbers are also referred to as the spectrum of the
input sequence. DFT is powerful in spotting periodicities in

a single sequence, with numerous uses in signal, voice, and
image processing. However, it is not clear how to assess the
similarity between two spectra, and hence DFT can be un-
suitable for clustering. Moreover, it has several limitations,
namely:

1. it can not find arbitrary frequencies (only ones that are
integer multiples of the base frequency),

2. it can not give partial credit for signals with nearby
frequences (‘frequency proximity’, Property P2 in the
introduction),

3. it can not do forecasting, other than blindly repeating
the original signal.

Due to those limitations, we do not compare PLiF against
DFT, in the experiments section under clustering.

B.3 Linear Dynamical Systems
Linear Dynamical Systems (LDS), also known as Kalman

filters, have been used previously to model multi-dimensional
continuous valued time series. The model is described by the
following equations:

~z1 = ~µ0 + ~ω1 (10)

~zn+1 = A~zn + ~ωn+1 (11)

~xn = C~zn + ~εn (12)

where ~µ0 is initial state of the whole system.
The model assumes the observed data sequences (~xn) are

generated from the a series of hidden variables (~zn) with
a linear projection matrix C, and the hidden variables are
evolving over time with linear transition matrix A, so that
next time tick only depends on the previous time tick as
in Markov chains. All noises (~ω’s and ~ε’s) arising from the
process are modeled as independent Gaussian noises with
covariances Q0, Q and R respectively. Given the observa-
tion series, there exist algorithms for estimating hidden vari-
ables [16] and EM algorithms for learning the model param-
eters [29, 7], with publicly available implementations4. The
EM algorithm maximizes L(θ), the expected log-likelihood
defined in Eq. 13, iteratively. In the E step, it estimates the
posterior distribution of the hidden variables conditioned on
the data sequence with fixed model parameters; in the M
step, it then updates the model parameters by maximizing
the likelihood using some sufficient statistics (e.g. mean and
covariance) from the posterior distribution.

L(θ;X) = EX ,Z|θ[−D(~z1, ~µ0,Q0)

−
T∑

t=2

D(~zt,A~zt−1,Q)−
T∑

t=1

D(~xt,C~zt,R)

−1

2
log |Q0| − T− 1

2
log |Q| − T

2
log |R|](13)

where D() is the square of the Mahalanobis distance, i.e.
D(~x, ~y, Σ) = (~x− ~y)T Σ−1(~x− ~y).

The difference between our proposed PLiF and LDS is
that in addition to learning straight forward transitions and
projections, PLiF will further discover deeper patterns be-
hind them. The problem with LDS learning (see Fig. 2(c))
is that the learned model parameters are hard to interpret.

4http://people.cs.ubc.ca/∼murphy/software/kalman/
kalman.html

C. EXPERIMENTS AND ALGORITHM DE-
TAILS

C.1 Proof Sketches

Lemma 1. Consider the eigenvalue equation A · x = λx,
where x is the eigenvector. Taking the conjugate on both
sides we get A · x = λx. As A contains only real entries,
A · x = λx. Hence, if the conjugate λ is an eigenvalue of A,
x is also a corresponding (conjugate) eigenvector.

Lemma 2.

~znew
n = V∗ · ~zn

= V∗ ·A · ~zn−1 + noise

= V∗ ·V ·Λ ·V∗ · ~zn−1 + noise

= Λ · ~znew
n−1 + noise

~x1 = C · ~µ0 + noise = C ·V ·V∗ · ~µ0 + noise

= ~Ch · ~µnew
0 + noise

~x2 = C · ~z2 + noise = C ·A · ~z1 + noise

= C ·V ·Λ ·V∗ · ~µ0 + noise

= Ch ·Λ · ~µnew
0 + noise

The result then follows by induction on the number of time
ticks.

C.2 Experimental Setup
We describe here our experimental setup and datasets.

• Mocap data (MOCAP): Motion capture involves record-
ing human motion through tracking the marker move-
ment on human actors and then turn them into a se-
ries of multi-dimensional coordinates in 3d space. We
use a publicly available mocap dataset from CMU5.
It includes 49 walking and running motions of sub-
ject#16. Each motion sequence contains 93 positions
for 31 markers in body local coordinate and three ref-
erence coordinates.

• Chlorine Data (CHLORINE): The chlorine dataset is pub-
licly available6 and it contains m=166 sequences of
Chlorine concentration measurements on a water net-
work over 15 days at the rate of one sample per 5 min-
utes (T=4310 time ticks). The dataset was produced
by the EPANET 2 hydraulic analysis package7, which
reflects periodic patterns (daily cycles, dominating resi-
dential demand pattern) in the Chlorine concentration,
with a few exceptions and time shifts (see sample se-
quences in Fig. 9(a)).

• Router Data (BGP): We examine BGP Monitor data
containing 18 million BGP update messages over a pe-
riod of two years (09/2004 to 09/2006) from the Data-
pository project8. We consider the number of updates
received by a router every 10 minutes. A snippet is
shown in Fig. 9(b). As the signals are very bursty, we
take their logarithms (see Fig. 9(c)). The preprocessed

5http://mocap.cs.cmu.edu
6www.cs.cmu.edu/afs/cs/project/spirit-
1/www/data/cl2fullLarge.zip
7http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
8http://www.datapository.net/bgpmon/

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

(a) CHLORINE

0 2 4 6

x 10
5

0

1000

2000

3000

4000

time (s)

up

da
te

s

(b) BGP: for the router at Washington DC

0 2 4 6

x 10
5

10
0

10
2

10
4

time (s)

up

da
te

s

(c) BGP (Washington DC), in log scale

Figure 9: Sample snippets from datasets. (a) CHLORINE shows daily periodicity; (b) BGP is bursty with no
periodicities, thus we take the logarithm (shown in part (c)). No obvious patterns, in neither (b) nor (c).

BGP time series in the experiment consists of m=10 se-
quences (routers) of T=103,968 time ticks. The routers
are in 10 major centers (Atlanta, Washington DC, Seat-
tle etc.).

Our algorithms are implemented in Matlab 2008b, and
running on a machine with Windows XP, 3.2GHz dual core
CPU and 2G RAM.

C.3 Proposed PLiF: Scaling Up

Algorithm 1: PLiF

Input: X: m sequences with duration T, and k
Output: fingerprints F
choose h by 80%-95% energy criterion ;1

// learning dynamics (see Sec.3.1 and Eq.13)

A,C ← arg maxθ L(θ;X) ;2

// canonicalization, see Sec.3.2

compute Λ, V s.t. A ·V = V ·Λ;3

// compensating, see Sec.3.2

Ch = C ·V;4

// obtain polar form, see Sec.3.3

D ← keep conjugate pairs of columns in Ch;5

E ← take element-wise magnitude of D;6

Cm ← eliminate duplicate columns in E;7

// finding harmonics grouping, see Sec.3.4

Cm ← Cm −mean(Cm);8

compute Uk,Sk,Vk ← arg min ||Cm −Uk · Sk ·VT
k ||fro9

;
F ← Uk · Sk;10

We refer to the algorithm given in Section 3 as PLiF-naive
(pseudo-code given in Alg. 1), which gives the intuitive idea
and motivation for each algorithmic step. In this section
we will focus on the scalability of the algorithm and pro-
pose a faster implementation. Since PLiF-naive involves a
fair amount of matrix inversion, it is cubic to the size of
matrix of interest. To speed up the algorithm, our idea is
to perform smarter and faster matrix inversion instead of
straight-forward inversion. We will first analyze the com-
plexity of PLiF-naive. We make an assumption here that
the length of data sequence is much greater than the dimen-
sion, T À m, which is the common cases as otherwise the
resulting LDS model will be under-determined.

Proof Sketch of Lemma 4. : In each iteration of learning
LDS (Alg. 1, step 2), it does m×m and h×h matrix inversion
for T length of sequences. Rest all steps including eigen

value decomposition in canonicalization, taking polar form
and grouping harmonics with SVD, take at most O(m3).
Therefore, PLiF-naive has complexity of O(#iteration · T ·
(m3 + h3)).

The time complexity of PLiF-naive is linear with respect
to the length of sequences, but cubic to the number of se-
quences. Without going too much into the details, we de-
scribe briefly where such cubic complexity arises in PLiF-
naive. The major cubic computation involves calculation of
the inverse of the following m × m matrix while learning
LDS in the first step:

(CPnCT + R)−1 (14)

Here C is size m× h, Pn is h× h, and R is m×m. Pn is a
complicated matrix, hence we omit details of Pn for brevity
(full details can be found in [16]). This is updated in each
time tick while learning the LDS model (Alg. 1, step 2).
Cubic computation elsewhere is only a negligible fraction in
the typical case of m ¿ T.
How to scale up: We will focus on speeding up the com-
putation of the inversion. The idea underlying our method
is using the Woodbury matrix identity [9] to perform an
inverse on a smaller matrix (h × h) instead of direct large
matrix (m×m) inversion. In typical cases, h is much smaller
than m, therefore it will be significantly faster. We can then
substitute the matrix inversions in Alg. 1 step 2 with faster
ones. We will refer to this faster version as PLiF.

Lemma 5. PLiF can be computed within time of O(#iteration·
T · (m2 · h + h3) + m · h2).

Proof Sketch. : We will analyze Alg. 1 step by step. The
Woodbury formula tells the following identity for invertible
X:

(X+YZYT)−1 = X−1−X−1Y(Z−1+YT X−1Y)−1YT X−1

By applying the identity, we obtain the following equation
for computing Eq. 14:

R−1 −R−1C(P−1
n + CT R−1C)−1CT R−1 (15)

Since C and R are fixed inside each iteration and only up-
dated once at the end of each iteration, we can therefore pre-
compute R−1, R−1C and CT R−1C in the beginning of each
learning iteration. For each time tick of the data sequence,
the EM algorithm for learning LDS requires the inversion
of two h × h matrices and multiplication of m × h, h × h
and h×m matrices. Thus it takes O(T · (m2h+h3)) during
each iteration of learning the LDS assuming T À m, and it

follows that Alg. 1 step 2 takes O(#iteration ·T(m2h+h3)).
In addition, Alg. 1 step 3 takes O(h3), step 4 takes O(mh2),

and step 10 takes O(mh2).

